Ultrafast relaxation dynamics of phosphine-protected, rod-shaped Au20 clusters: interplay between solvation and surface trapping.
نویسندگان
چکیده
The exact interaction between Au cores and surface ligands remains largely unknown because of the complexity of the structure and chemistry of ligand/Au-core interfaces in ligand-protected Au nanoclusters (AuNCs), which are commonly found in many organic-inorganic complexes. Here, femtosecond transient absorption measurement of the excited-state dynamics of a newly synthesized phosphine-protected cluster [Au20(PPhpy2)10Cl4]Cl2 (1) is reported. Intramolecular charge transfer (ICT) from the Au core to the peripheral ligands was identified. Furthermore, we found that solvation strongly affected ICT at ligand/Au-core interfaces while by choosing several typical alcoholic solvents with different intrinsic solvation times, we successfully observed that excited-state relaxation dynamics together with displacive excited coherent oscillation of Au20 clusters were significantly modulated through the competition between solvation and surface trapping. The results provide a fundamental understanding of the structure-property relationships of the solvation-dependent core-shell interaction of AuNCs for the potential applications in catalysis, sensing and nanoelectronics.
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملElectronic Stability of Phosphine-Protected Au20 Nanocluster: Superatomic Bonding
A recent experiment reported that a newly crystallized phosphine-protected Au20 nanocluster [Au20(PPhy2)10Cl4]Cl2 [PPhpy2 = bis(2-pyridyl)phenylphosphine] owns a very stable Au20 core, but the number of valence electrons of the Au20 core is 14e, which is not predicted by the superatom model. So we apply the density functional theory to further study this cluster from its molecular orbital and c...
متن کاملSolvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions
In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...
متن کاملRole of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-n...
متن کاملFrom isolated molecules to biomolecules
We address the dynamics of electronicÈvibrational excited states in isolated molecules, clusters, condensed phase and biosystems, which pertain to the phenomena of energy acquisition, storage and disposal as explored from the microscopic point of view. The advent of femtosecond dynamics opened up new horizons in the exploration of chemical and biophysical processes on the timescale of nuclear m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 34 شماره
صفحات -
تاریخ انتشار 2014